Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: Evidence of a passive mechanism
نویسندگان
چکیده
It is well known that the aberrations of the cornea are partially compensated by the aberrations of the internal optics of the eye (primarily the crystalline lens) in young subjects. This effect has been found not only for the spherical aberration, but also for horizontal coma. It has been debated whether the compensation of horizontal coma is the result of passive mechanism [Artal, P., Benito, A., & Tabernero, J. (2006). The human eye is an example of robust optical design. Journal of Vision, 6 (1), 1-7] or through an active developmental feedback process [Kelly, J. E., Mihashi, T., & Howland, H. C. (2004). Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye. Journal of Vision, 4 (4), 262-271]. In this study we investigate the active or passive nature of the horizontal coma compensation using eyes with artificial lenses, where no active developmental process can be present. We measured total and corneal aberrations, and lens tilt and decentration in a group of 38 eyes implanted with two types of intraocular lenses designed to compensate the corneal spherical aberration of the average population. We found that spherical aberration was compensated by 66%, and horizontal coma by 87% on average. The spherical aberration is not compensated at an individual level, but horizontal coma is compensated individually (coefficients of correlation corneal/internal aberration: -0.946, p<0.0001). The fact that corneal (but not total) horizontal coma is highly correlated with angle lamda (computed from the shift of the 1st Purkinje image from the pupil center, for foveal fixation) indicates that the compensation arises primarily from the geometrical configuration of the eye (which generates horizontal coma of opposite signs in the cornea and internal optics). The amount and direction of tilts and misalignments of the lens are comparable to those found in young eyes, and on average tend to compensate (rather than increase) horizontal coma. Computer simulations using customized model eyes and different designs of intraocular lenses show that, while not all designs produce a compensation of horizontal coma, a wide range of aspheric biconvex designs may produce comparable compensation to that found in young eyes with crystalline lenses, over a relatively large field of view. These findings suggest that the lens shape, gradient index or foveal location do not need to be fine-tuned to achieve a compensation of horizontal coma. Our results cannot exclude a fine-tuning for the orientation of the crystalline lens, since cataract surgery seems to preserve the position of the capsule.
منابع مشابه
Customized computer models of eyes with intraocular lenses.
We compared experimental wave aberrations in pseudophakic eyes with aspheric intraocular lenses (IOLs) to simulate aberrations from numerical ray tracing on customized computer eye models using corneal topography, angle lambda, ocular biometry, IOL geometry, and IOL tilt and decentration measured on the same eyes. We found high correlations between real and simulated aberrations even for the ey...
متن کاملنتایج درازمدت نصب اسکلرال لنزهای داخل چشمی جابجا شده به روش خارج کردن هاپتیک از برش کوچک قرنیه
Background & Aim: Several methods have been reported for refixation of dislocated intraocular lenses (IOLs). However, these methods are associated with some disadvantages including vitreous prolaps, vitreous traction, ocular collapse, intraocular hemorrhage, high astigmatism, and the need for complex intraocular maneuvers. The aim of this study was to evaluate the results of transscleral fi...
متن کاملCompensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye.
Both the anterior surface of the cornea and the internal optics (the posterior cornea, crystalline lens) contribute to the aberration of a wavefront passing through the eye. Artal, Guirao, Berrio, and Williams (2001) reported that the wavefront aberrations produced by the internal optics offset, or compensate for, the aberrations produced by the cornea to reduce ocular wavefront aberrations. We...
متن کاملCorrecting anterior corneal aberration and variability of lens movements in keratoconic eyes with back-surface customized soft contact lenses.
Customized contact lenses are limited in their correction performance, especially on irregular corneas, owing to decentration and rotation of the lenses. To overcome this limitation, we proposed to customize the back surface of soft contact lenses to match the anterior irregular corneal surface. These lenses were designed to correct anterior corneal aberrations and to improve lens stability. Al...
متن کاملHigher order aberration comparison between two aspherical intraocular lenses: MC6125AS and Akreos advanced optics.
AIM To compare higher order aberrations in two aspherical intraocular lenses (IOLs): Akreos advanced optics (AO) and Dr. Schmidt Microcrystalline 6125 aspheric anterior surface (MC6125AS) with each other. METHODS Forty eyes of 39 patients underwent phacoemulsification and Akreos AO and MC6125AS were implanted in their eyes in a random manner. Three months post-operatively, higher order aberra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 48 شماره
صفحات -
تاریخ انتشار 2008